Estimating Climate Resilience for Conservation across Geophysical Settings
نویسندگان
چکیده
Conservationists need methods to conserve biological diversity while allowing species and communities to rearrange in response to a changing climate. We developed and tested such a method for northeastern North America that we based on physical features associated with ecological diversity and site resilience to climate change. We comprehensively mapped 30 distinct geophysical settings based on geology and elevation. Within each geophysical setting, we identified sites that were both connected by natural cover and that had relatively more microclimates indicated by diverse topography and elevation gradients. We did this by scoring every 405 ha hexagon in the region for these two characteristics and selecting those that scored >SD 0.5 above the mean combined score for each setting. We hypothesized that these high-scoring sites had the greatest resilience to climate change, and we compared them with sites selected by The Nature Conservancy for their high-quality rare species populations and natural community occurrences. High-scoring sites captured significantly more of the biodiversity sites than expected by chance (p < 0.0001): 75% of the 414 target species, 49% of the 4592 target species locations, and 53% of the 2170 target community locations. Calcareous bedrock, coarse sand, and fine silt settings scored markedly lower for estimated resilience and had low levels of permanent land protection (average 7%). Because our method identifies-for every geophysical setting-sites that are the most likely to retain species and functions longer under a changing climate, it reveals natural strongholds for future conservation that would also capture substantial existing biodiversity and correct the bias in current secured lands.
منابع مشابه
Conservation in the face of climate change: recent developments [version 1; referees: 3 approved]
An increased understanding of the current and potential future impacts of climate change has significantly influenced conservation in practice in recent years. Climate change has necessitated a shift toward longer planning time horizons, moving baselines, and evolving conservation goals and targets. This shift has resulted in new perspectives on, and changes in, the basic approaches practitione...
متن کاملConservation in the face of climate change: recent developments
An increased understanding of the current and potential future impacts of climate change has significantly influenced conservation in practice in recent years. Climate change has necessitated a shift toward longer planning time horizons, moving baselines, and evolving conservation goals and targets. This shift has resulted in new perspectives on, and changes in, the basic approaches practitione...
متن کاملConservation in the Context of Climate Change: Practical Guidelines for Land Protection at Local Scales
Climate change will affect the composition of plant and animal communities in many habitats and geographic settings. This presents a dilemma for conservation programs--will the portfolio of protected lands we now have achieve a goal of conserving biodiversity in the future when the ecological communities occurring within them change? Climate change will significantly alter many plant communitie...
متن کاملIs ‘Resilience’ Maladaptive? Towards an Accurate Lexicon for Climate Change Adaptation
Climate change adaptation is a rapidly evolving field in conservation biology and includes a range of strategies from resisting to actively directing change on the landscape. The term 'climate change resilience,' frequently used to characterize adaptation strategies, deserves closer scrutiny because it is ambiguous, often misunderstood, and difficult to apply consistently across disciplines and...
متن کاملConserving the Stage: Climate Change and the Geophysical Underpinnings of Species Diversity
Conservationists have proposed methods for adapting to climate change that assume species distributions are primarily explained by climate variables. The key idea is to use the understanding of species-climate relationships to map corridors and to identify regions of faunal stability or high species turnover. An alternative approach is to adopt an evolutionary timescale and ask ultimately what ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 28 شماره
صفحات -
تاریخ انتشار 2014